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Introduction

The problem of searching for patterns in data is a fundamental one
and has a long and successful history. For example, the extensive
astronomical observations of Tycho Brahe in the 16th century
allowed Johannes Kepler to discover the empirical laws of planetary
motion, which in turn provided a springboard for the development
of classical mechanics.
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Statistical Learning

Statistical Learning

Supervised Learning

Regression Classification

Unsupervised Learning
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Regression (Problem Setting)

Sample set of independent and identically distributed (i.i.d.)
observations drawn according to P(x, y) = P(x)P(y|x),

S =
{

(x`, y`) ∈ X d × Y | 1 ≤ ` ≤ m
}

Set of hypotheses

H = {h(·, p) : X d → Y | p ∈ P}

Risk functional

R(p) =

∫
Zd

(h(x`, p)− y`)2dP(x, y)

The regression function is the one that minimises the risk
functional,

%(x) =

∫
Y
y dP(y|x).

But in our situation, the joint probability distribution function
P(x, y) is unknown.
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Regression Estimation

Remark
If the regression function % does not belong to the set of
hypotheses H, then the function h(·, p∗) ∈ H minimising the risk
functional is the closest to the regression in the metric

ν(%, h(·, p∗)) =

√∫
X d

(%(x)− h(x, p∗))2 dP(x),

where the existence of h(·, p∗) is provided.
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Empirical Risk Minimization Principle

In order to minimise the risk functional R with an unknown
distribution function P(x, y), the following inductive principle is
applied in statistical learning:

(i) The risk functional R is replaced by the so-called
empirical risk functional

Remp(p) =
1

m

∑
(x,y)∈S

(h(x, p)− y)2

constructed on the basis of the finite sample set S.

(ii) One approximates the hypothesis h(·, p∗) that
minimise the risk functional R by the function
h(·, pS) ∈ H minimising the empirical risk.

This principle is called the empirical risk minimisation (ERM)
principle.
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Performance of the Estimator

Theorem (See e.g. Györfi et al. (2002))

Let 1 6 L <∞. Assume |y| 6 L almost surely. Let the estimate
hemp be defined by minimization of the empirical risk over a set of
functions H and truncation at ±L. Then one has

E{
∫
X d

(hemp(x, p)− %(x))2dP(x)}

6
c1
m

+
(c2 + c3 log(m))VH+

m
+ 2 inf

h∈H

∫
X d

(h(x, p)− %(x))2dP(x),

where

c1 = 24·214L4(1+log 42), c2 = 48·214L4 log(480eL2), c3 = 48·214L4

and VH+ is the V C dimension of H+ := {hyp(h) | h ∈ H}
(Vapnik - Chervonenkis).
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Contributions

Every hypothesis h(·, p) is a linear combination of elementary
features, i.e.

h(x, p) =

n1∑
i1=1

· · ·
nd∑
id=1

c(p)(i1,...,id)

d∏
ν=1

ϕν,iν (xν) =

〈
c(p),

d⊗
ν=1

ϕν(xν)

〉
,

where c(p) ∈ Rn1×···×nd and
ϕν(xν) = (ϕν,1(xν), · · · , ϕν,nν (xν))T ∈ Rnν .
In our new ansatz, the coefficient tensor c(p) is represented in a
tensor format.

⇒ Remp(p) =
1

2
〈Ac(p), c(p)〉 − 〈b, c(p)〉+ const.

A ≥ 0, A = At.
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Tensor Formats

What is a Tensor Format Representation?

U :
L

×
µ=1

Pµ →
d⊗

ν=1

Rnν (L ≥ d)

u = U(p1, . . . , pL) is represented in the tensor format U

• U is multilinear in p1, . . . , pL

• (p1, . . . , pL) is a representation system of u

Example (r-Term Representation)

pµ = (pµ,j ∈ Rn : 1 ≤ j ≤ r)

(p1, . . . , pd) 7→ Ur-term(p1, . . . , pd) =

r∑
j=1

d⊗
µ=1

pµ,j
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Tensor Formats

Example (Matrix Product States (MPS), Tensor-Train (TT))

up =

r∑
j1=1

r∑
j2=1

r∑
j3=1

p1,j1 ⊗ p2,j1,j2 ⊗ p3,j2,j3 ⊗ p4,j3 (pµ,· ∈ Rn)

Example (Conformal Tensor Formats)

Quantum Mechanics (two-electron integrals):

u(w,p) =
r∑

j1=1

r∑
j2=1

wj1,j2 · p1,j1 ⊗ p2,j2 ⊗ p3,j1 ⊗ p4,j2 , (pµ,· ∈ Rn, w· ∈ R)
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Alternating Steepest Descent Algorithm

Optimisation Respect to Parameter Space

f(u) =
1

2
〈Au, u〉 − 〈b, u〉 ,

• u is substituted by a tensor representation: u := U(p1, . . . , pL)

⇒ f(u) = F (p1, . . . , pL) = f(U(p1, . . . , pL))

• We are looking for a representation system (p∗1, . . . , p
∗
L) such

that
F (p∗1, . . . , p

∗
L) = inf

(p1,...,pL)∈P
F (p1, . . . , pL).
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Alternating Steepest Descent Algorithm

v = U(p1, . . . , , pµ−1, pµ, pµ+1, . . . , pL)

= Wµ(p1, · · · , pµ−1, pµ+1, . . . , pL)pµ

=: Wµpµ

The following holds:

(i) Wµ is a linear map and ran (Wµ) is a linear subspace of⊗d
µ=1R

n.

(ii) Wµ ⊂ ran (U), i.e. addition of represented tensors in Wµ will
not change the ranks

(ii) Direction of steepest ascent in Uµ := span(Wµ)

1

‖W T
µ (Av − b)‖Pµ

WµW
T
µ (Av − b) = argmaxWµqµ∈Uµ

〈f ′(v),Wµqµ〉
‖qµ‖Pµ
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Alternating Steepest Descent Algorithm

Algorithmus 1 ASD method

1: Choose initial p1 ∈ P , and define k := 1.
2: while Stop Condition do
3: for 1 ≤ µ ≤ L do
4:

rk,µ := b−Avk,µ
dk,µ := Wk,µM

−1
k,µW

T
k,µrk,µ

λk,µ :=
〈rk,µ, dk,µ〉
〈Adk,µ, dk,µ〉

vk,µ+1 := vk,µ + λk,µdk,µ

5: end for
6: k 7→ k + 1.
7: end while
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Pivotised Alternating Steepest Descent Algorithm

Algorithmus 2 Pivotised ASD (PASD) method

1: Choose initial p1 ∈ P , and define k := 1.
2: while Stop Condition do

3: µ := argmax1≤ν≤L

∥∥∥ ∂F∂pν (pk,ν)
∥∥∥
∞

4:

rk,µ := b−Avk,µ
dk,µ := Wk,µM

−1
k,µW

T
k,µrk,µ

λk,µ :=
〈rk,µ, dk,µ〉
〈Adk,µ, dk,µ〉

vk,µ+1 := vk,µ + λk,µdk,µ

5: k 7→ k + 1.
6: end while
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The Alternating Least Squares Algorithm

Algorithmus 3 ALS method

1: Choose initial p1 ∈ P , and define k := 1.
2: while Stop Condition do
3: for 1 ≤ µ ≤ L do
4: Compute the minimum norm solution of the least squares

problem

pk+1
µ := argminqµ∈PµF (pk+1

1 , . . . , pk+1
µ−1, qµ, p

k
µ+1, . . . , p

k
L).

5: end for
6: k 7→ k + 1.
7: end while

Numerical Cost of ALS = Numerical Cost of ASD + O(m3)

m := max1≤µ≤L dimPµ
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Convergence of the ASD & PASD Method

Notation(
uk
)
k∈N ⊂ V is the sequence of corresponding tensors from the

ALS iteration, i.e.

uk := U(pk) for all k ∈ N.

The set of accumulation points of
(
uk
)
k∈N is denoted by A

(
uk
)
.

Critical Points
The set of critical points M is defined by

M := {u ∈ V | ∃p ∈ P : u = U(p) ∧ F ′(p) = 0}.
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Convergence of the ASD & PASD Method

General Assumption

• Suppose that the sequence of parameter
(
pk
)
k∈N ⊂ P is

bounded.

• For all µ ≤ L there exists k0 and γµ > 0 such that for all
k ≥ k0 we have

σ
[µ]
min,+(Wk,µ) := min {σk,µ > 0 : σk,µ is singular value of Wk,µ} ≥ γµ.

The assumptions are motivated by the counterexample of Lim and
de Silva (2008).

b = x⊗ x⊗ y + x⊗ y ⊗ x+ y ⊗ x⊗ x

vk =

(
x+

1

k
y

)
⊗
(
x+

1

k
y

)
⊗ (kx+ y)− x⊗ x⊗ kx −−−→

k→∞
b.
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Convergence of the ASD & PASD Method

tan2∠[ū, uk,µ+1] =

q(s)k,µ
q
(c)
k,µ

2

tan2∠[ū, uk,µ],

where

dk,µ =
[
ū R

]( γk,µ
ρk,µ

)
, uk,µ =

[
ū R

]( ck,µ
sk,µ

)

q
(s)
k,µ :=

‖sk,µ + λk,µρk,µ‖
‖sk,µ‖

q
(c)
k,µ :=

|ck,µ + λk,µγk,µ|
|ck,µ|
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Convergence of the ASD & PASD Method

Theorem (E., (2016))

• Every accumulation point of
(
uk
)
k∈N ⊂ V is a critical point,

i.e. A
(
uk
)
⊆M, furthermore

dist(uk,M) −−−→
k→∞

0.

•
uk −−−→

k→∞
ū for PASD

and if one accumulation point ū is isolated, then

uk −−−→
k→∞

ū for ASD,

where
tan∠[uk,µ+1, ū] ≤ qµ tan∠[uk,µ, ū],

with qµ := lim supk→∞

∣∣∣∣ q(s)k,µq
(c)
k,µ

∣∣∣∣.
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Numerical Experiment

U(p1, . . . , pd) = p1 ⊗ . . .⊗ pd,

f(u) =
1

2
‖u‖2 + 〈b, u〉 (A = id)

〈p, q〉 = 0, ‖p‖ = 1, ‖q‖ = 1

bλ =

3⊗
µ=1

p+ λ (p⊗ q ⊗ q + q ⊗ p⊗ q + q ⊗ q ⊗ p) ,

lim sup
k→∞

∣∣∣∣∣∣q
(s)
k,µ

q
(c)
k,µ

∣∣∣∣∣∣ =
λ

2

(
3λ+ λ2 +

√
(3λ+ λ2)2 + 4λ

)
Note: The ALS method has the same rate of convergence, E.
Khachatryan (2014).
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Numerical Experiment
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Numerical Experiment
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Numerical Experiment
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Numerical Experiment

U(p1, . . . , pd) = p1 ⊗ . . .⊗ pd

b =

r∑
j=1

λj

d⊗
µ=1

bjµ, λ1 ≥ · · · ≥ λr > 0, 〈biµ, bjµ〉 = δij

qµ = lim sup
k→∞

∣∣∣∣∣∣q
(s)
k,µ

q
(c)
k,µ

∣∣∣∣∣∣ = 0
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Numerical Experiment
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Numerical Experiment: Statistical Learning

(Joint work with L. Sobolevskaya)
Error measure

RMSD =

√∑m
`=1(h(x, p∗)− y`)2

m
.

Yacht Problem
This problem consists of predicting the residuary resistance of
sailing yachts at the initial design stage. This data set comprises
m = 308 full-scale experiments.

1 Longitudinal position of the center of buoyancy.
2 Prismatic coefficient.
3 Length-displacement ratio.
4 Beam-draught ratio.
5 Length-beam ratio.
6 Froude number.

The output variable is the residuary resistance per unit weight of
displacement:

1 Residuary resistance per unit weight of displacement.
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Numerical Experiment: Yacht Problem

Spline bases functions.

1 2

10−0.2

100

Rank

R
M
S
D

`=3 training set

`=3 entire set

`=6 training set

`=6 entire set

`=12 training set

`=12 entire set

` = 3 ` = 6 ` = 12

RMSDTS 0.600926 0.593134 0.584214

RMSDES 1.01085 1.22633 1.19185

Max rank 2 1 1

Runtime [sec] 4.91 3.209 2.082
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Comparisons

our approach ’neuralnet’ ’scikit-learn’

RMSD100% 1.192 3.457 4.614

Runtime 2.1 secs 1.15 mins 13.6 secs

Table: The evaluations has been performed on the sismatically chosen
training sets set equal to 20% of the data set.

our approach ’neuralnet’ ’scikit-learn’

RMSD100% 1.61907 7.765 3.705

runtime 1.443 secs 1.74 hours 31.43 secs
Table: The evaluations has been performed on the randomly chosen
training sets set equal to 20% of the data set.
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Comparisons

our approach ’neuralnet’ ’scikit-learn’

RMSD100% 0.736 1.268 1.33

Runtime 4.57 secs 14.37 mins 39.53 secs
Table: The evaluations has been performed on the on the systematically
chosen training set equal to 40% of the data set.

our approach ’neuralnet’ ’scikit-learn’

RMSD100% 0.975 4.0445 1.676

Runtime 1.83 secs 43.35 mins 73 secs
Table: The evaluations has been performed on the randomly chosen
training sets set equal to 40% of the data set.
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Comparisons

our approach ’neuralnet’ ’scikit-learn’

RMSD100% 0.757 1.586 1.0097

Runtime 6.669 secs 1.2 hours 76.778 secs

Table: The evaluations has been performed on the systematically chosen
training set equal to 60% of the data set.

our approach ’neuralnet’ ’scikit-learn’

RMSD100% 0.826 0.933 1.075

Runtime 3.2 secs 31.876 min 89.8 secs
Table: The evaluations has been performed on the randomly chosen
training sets set equal to 60% of the data set.
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Comparisons

our approach ’neuralnet’ ’scikit-learn’

RMSD100% 0.5809 0.587 0.713

Runtime 51.3 secs 4.975 hours 107.51 secs
Table: The evaluations has been performed on randomly chosen training
sets set equal to 80% of the data set.
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Numerical Experiment: Two Electron Integrals

Let B := {ϕi : R3 → R : 1 ≤ i ≤ k} be a set of so called atomic
orbitals.
Two electronic Integrals are defined by

ti1,i2,i3,i4 = c

∫
R3

∫
R3

ϕi1(x)ϕi2(x)ϕi3(y)ϕi4(y)

‖x− y‖
dxdy f.a. i1, ..., i4 ∈ Nk.

Let I = Nk ×Nk ×Nk ×Nk.

We want to approximate ti1,i2,i3,i4 f.a. (i1, ..., i4) ∈ I with a tensor
of the smallest possible rank.
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Random Training Sets

1 2 3 4 5

10−1.4

Rank

R
M
S
D
Hydrogen

training set

entire set

Figure: The hypotheses was trained on randomly chosen training sets
equal to 50 % of the entire data set and then evaluated on the entire set.
Running time was 162.972 sec
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Overfitting

1 2 3 4 5 6 7 8 9

10−1.35

Rank

R
M
S
D
Hydrogen

λ1 = 1.0e− 10

λ1 = 1.0e− 6

Figure: RMSD value of the entire set. As training sets were used
randomly chosen 50% of the entire set. Running time was 69.1 sec
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Overfitting

1 2 3 4 5 6 7 8 9 10
10−1

10−0.5

Rank

R
M
S
D

H4

λ1 = 1.0e− 10

λ1 = 1.0e− 5

Figure: RMSD value of the entire set. As training sets were used
randomly chosen 50% of the entire set.
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Summary

50% of the entire set 80% of the entire set entire set

RMSD(I) 0.0432166 0.0408642 0.0278161

Rank 9 11 11

Runtime [sec] 69.1 483.945 1276.86

1 2 3 4 5 6 7 8 9 10 11

10−1.5

10−1.4

Rank

R
M
S
D

Hydrogen

randomly chosen 50% of data

randomly chosen 80% of data

entire set
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Summary

50% of the entire set 80% of the entire set entire set

RMSD(I) 0.12461 0.0724535 0.0264707

Rank 15 14 15

Runtime [sec] 25.2576 45.9685 84.528

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

10−1.5

10−1

Rank

R
M
S
D

H4

randomly chosen 50% of data

randomly chosen 80% of data

entire set
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Publications & Source Files

• http://www.alopax.de/publications

• Tensor Calculus, Open Source Lib in C++,
http://gitorious.org/tensorcalculus/pages/Home [H. Auer, Espig,

Handschuh, Wähnert, 2011]
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