Comparison between PEALD-TiN films using TiCl₄ or TDMAT as Ti-precursor

Westsächsische Hochschule Zwickau

University of Applied Sciences

Junghans, T.; Reinhold, U.; Schnabel, H.-D.

University of Applied Sciences Zwickau, Germany

abstract

For some years, thin films of Titanium Nitride (TiN) have been interesting for applications in microelectronics due to its semiconductor properties. To produce films in the nanometerrange mostly atomic layer deposition (ALD) – technique is used. This poster compares PEALD-TiN films deposited under comparable conditions with titanium tetrachloride (TiCl₄) or Tetrakis-(dimethylamino)-titanium (TDMAT) as Ti-precursor.

experimental setup											
Reactor:		Substrate and Samples:			eposition:	Measurement:					
• ALD 150 (FHR)		•	Silicon with native oxide (SiO ₂)	•	Plasma enhanced	•	Ex situ ellipsometry				
Precursor/purge gas		Fig. 1:	about 2 nm thick	•	Plasma-power: 300 W	•	Four-point-probe resistance				
		schematic •	Pieces of 1 cm x 1.5 cm size	•	NH ₃ as reaction-gas		measurement				
		of used •	At least two samples per	•	Substrate-temperature: 170	•	X-Ray photoelectron spectroscopy				
eating coil		remote-	deposition central and		°C - 180 °C	•	X-Ray reflectometry				

	atom concentrations in 6 nm depth by XPS								atom concentrations in 6 nm depth by XPS						
	element	Ν	0	Cl	Ti	N/Ti-ratio			ele	ment	С	Ν	0	Ti	N/Ti-ratio
	atomic-%	42.8	21.65	1.55	34	1.2585			ato	mic-%	11.15	28.75	30.5	29.65	0.9696
 Process easier to establish Thermally more stable precursor Shorter exposure time needed Deposition results in: More uniform films Lower sheet resistance Higher density Lower GPC → longer processes Vacuum system damaging reaction products Stable process established Slightly lower oxygen contamination 						ncl	 Process more difficult to establish Thermally instable precursor Long exposure time needed State Deposition results in: Less uniform films Higher sheet resistance Slightly lower density 					Higher GPC – processes por Stable proces development High carbon a contaminatio	Shorter ssible s still in and oxygen on		
_							tera	atι	ure						
[1 [2	 Knoops, H.C.M et al.; Deposition of TiN and TaN by remote plasma ALD for Cu and Li diffusion barrier applications; Journal of Electrochemical Society; 01/2008; DOI:10.1149/1.2988651 Kai-Erik Elers et al., TiCl₄ as a Precursor in the TiN Deposition by ALD and PEALD; Journal of Electrochemical Society; 2005 							 [3] J. Musschoot et al.; Atomic Layer Deposition of titanium nitride from TDMAT precursor; Microelectronic Engineering; 2009; DOI: 10.1016/j.mee.2008.09.036 [4] Hyo Kyeom Kim et al.; Metalorganic Atomic Layer Deposition of TiN Thin Films Using TDMAT and NH₃; Journal of the Korean Physical Society; 2002 							
Special thanks															
	Sebastian Rauer (University of Applied Sciences Zwickau) for XRR-measurement and Dirk Hildebrand (University of Applied Sciences Zwickau) for XPS-measurement														