

Tobias Baselt, Pascal Böswetter, Thomas Hammer, Frank Ebert, Fabiola Basan und Prof. Peter Hartmann

Westsächsische Hochschule Zwickau

University of Applied Sciences

Institut für Oberflächentechnologien und Mikrosysteme (IfOM)

Gliederung

- Anforderungen anlichtquellen
- Superkontinuum
- Einfluss des Microchip-Lasers
- Optimierung der Faserparameter
- Konstruktive Umsetzung der Ergebnise
- Zusammenfassung und weitere Ziele

geeignete Beleuchtungssysteme

Superlumineszenzdioden Laserquellen Halogen Superkontinuumslichquellen Superlumineszenzdioden Laserquellen Halogen

(Simulationsprogramm fiberdesk; Dr. Thomas Schreiber; IOF Jena)

nichtlineare optische Effekte

aufgrund

hoher Intensitäten

- Optischer Kerr-Effekt
- Selbst- und Kreuzphasenmodulation
- Frequenzmischung
- Stimulierte Brillouin- und Raman-Streuung
- Solitonen

Optimierung der Laserparameter

Änderung der Parameter der Pumpdiode

- •Leistung
- Modulation

Position	1	2	3
Peak Power [kw]	13	10	8
Average Power [mW]	60	60	70
Repetition rate [kHz]	7	9	11,5
Energy/Puls [µJ]	>9	>7	>6

Position	1	2	3
Peak Power [kw]	13	10	8
Average Power [mW]	60	60	70
Repetition rate [kHz]	7	9	11,5
Energy/Puls [µJ]	>9	>7	>6

Position	1	2	3
Peak Power [kw]	13	10	8
Average Power [mW]	60	60	70
Repetition rate [kHz]	7	9	11,5
Energy/Puls [µJ]	>9	>7	>6

Optimierung der Pulsparameter zur Erzeugung von Superkontinuum mittels µ-Chiplaser

Optimierung der Pulsparameter zur Erzeugung von Superkontinuum mittels µ-Chiplaser

Pulslängen größer 2 ns erzeugen
 Superkontinuum mit hoher spektraler Breite

Zerstörung der Faser durch hohe Leistungsdichten

Optimierung der Pulsparameter zur Erzeugung von Superkontinuum mittels µ-Chiplaser

Pulslängen größer 2 ns erzeugen
 Superkontinuum mit hoher spektraler Breite

Pulslängen

CR4+:YAG Sättigbarer Absorber

1-100 kHz

1-3000 µJ

0,4-10 ns

 Plötzliche Reduktion der Verluste führt zu intensivem Laserpuls, der die Inversion sehr schnell abbaut

Nd:YAG

- Repetitionsrate
- Pulsenergie
- Pulslänge
- Average power 0,1-3 W

Optimierungsmöglichkeiten

Einkopplung in die Faser

Einkopplung in die Faser

Einkopplung in die Faser

Optimierungsmöglichkeiten

Variation der Fasergeometrie

Fasergeometrie 1 Fasergeometrie 2

- Kern Ø: 4,4 µm
- Luftloch Ø: 5 µm
- Pitch: 5,4 µm

- Kern Ø: 4,7 μm
- Luftloch Ø: 3,2 µm
- Pitch: 4,2 µm

Untersuchung des Superkontinuum in Abhängigkeit der Fasergeometrie

Untersuchung des Superkontinuum in Abhängigkeit der Fasergeometrie

$> 20 \ \mu$ W/nm im VIS

Optimum des Superkontinuum bei Faserlängen < 25 m

Untersuchung der Langzeitstabilität

 $\downarrow P_{int}$ um 30 %

hervorragende Kurzzeitstabilität

Puls-zu-Puls-Stabilität

- Verbesserung der Einkopplung
- Verringerung der mechanischen Instabilit
 ät bei dotierten Fasern
- Tapern der Fasergeometrie 2
- Variation der Fasergeometrie zu größerem Kern- und kleinerem Kapillardurchmesser

