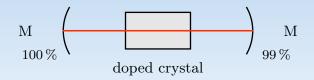
Recent results on single-mode single-polarization Tm:fiber laser

Separate components and assembled laser system

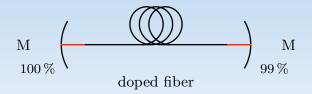
Pascal Böswetter^{1,2}, Erik McKee², Joshua Bradford², Christina Willis², Lawrence Shah², Martin Richardson²

¹Westsächsische Hochschule Zwickau, University of Applied Sciences ²CREOL, The College of Optics & Photonics, University of Central Florida

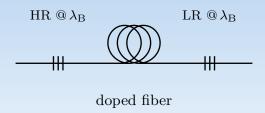
01-19-2012



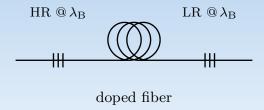
Outline


- Motivation
- 2 Fabrication of fiber Bragg gratings
- 3 Characterization of fiber Bragg gratings
- 4 All-active fiber laser set-up
- Spliced fiber laser

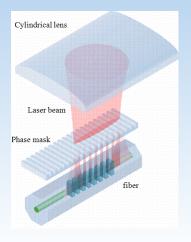
Simplified solid state laser:


- adjustable mirrors
- field distribution must match the cavity eigenmodes
- laser performance affected by environment
- optical misalignment due to thermal drift possible

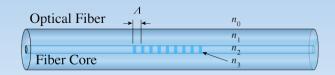
Simplified fiber laser:

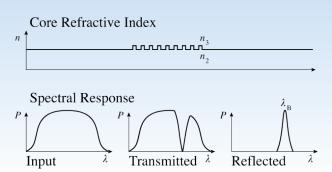

- adjustable mirrors
- fewer cavity / fiber modes
- environmental influences less significant
- optical misalignment due to thermal drift possible

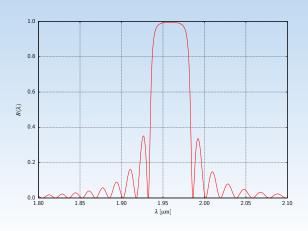
Simplified fiber laser with fiber Bragg gratings (FBG) to feedback:


- no external mirrors
- fewer cavity / fiber modes
- environmental influences less significant
- optical misalignment due to thermal drift still possible

Requirements:


- single-mode
- narrow linewidth
- wavelength tunability by direct temperature control
- e.g. pumping of holmium lasers


"Writing" a grating into the fiber

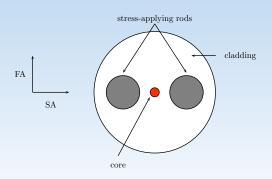

- illuminating phase mask with fs laser beam
- local change of n in core and cladding
- \bullet Δn , Λ , N

Local index modulations cause Fresnel reflections

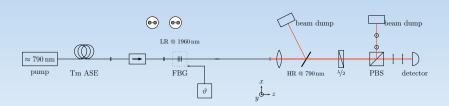
Local index modulations cause Fresnel reflections

$$\uparrow \Delta n \rightarrow \uparrow R, \uparrow \Delta \lambda_{\rm B}$$

 $\uparrow N \rightarrow \uparrow R, \downarrow \Delta \lambda_{\rm B}$

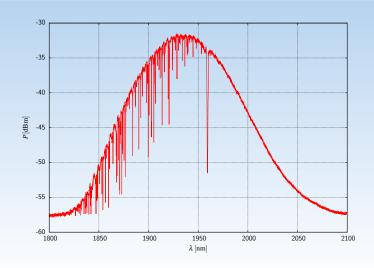

Fabrication of fiber Bragg gratings
Characterization of fiber Bragg gratings
All-active fiber laser set-up
Spliced fiber laser

The panda

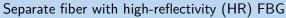


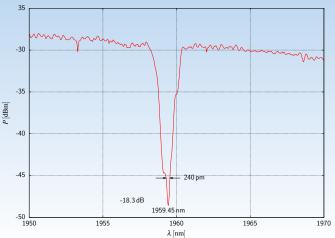
The PANDA fiber

cladding diameter $130\,\mu m$ core diameter $10\,\mu m$ rod diameter $35\,\mu m$

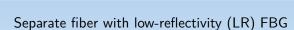


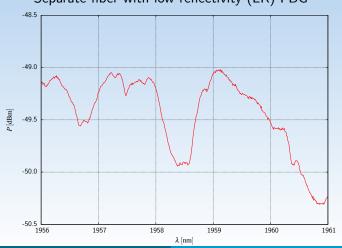
Set-up

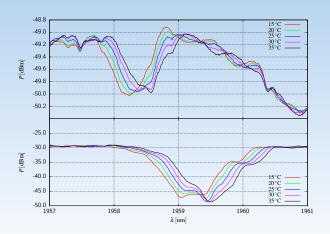



- ASE signal as optical input
- temperature control of FBG
- analysis of Bragg wavelength and tunability

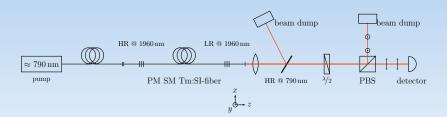
Broadband Tm ASE source




High-reflectivity FBG

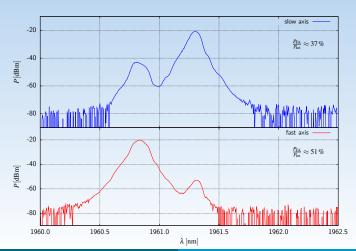


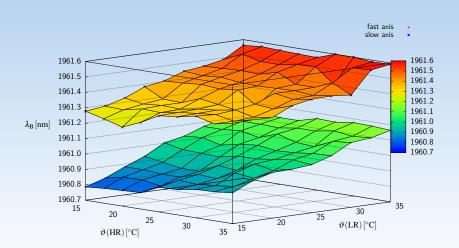
Low-reflectivity FBG



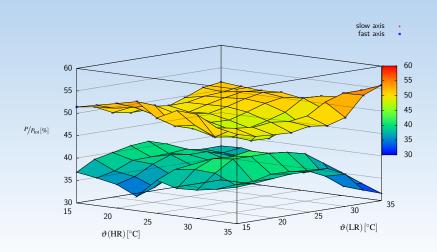
High- and low-reflectivity FBG

slope $\approx 15 \, \text{pm/K}$

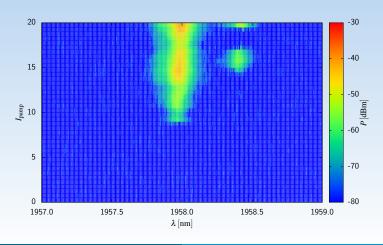

Monolithic set-up


- monolithic laser with inscribed FBGs, only 1 splice required
- temperature control of both FBGs independently
- tunability and polarization

Polarized spectrum

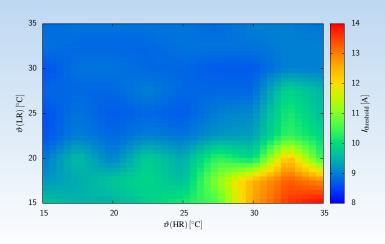


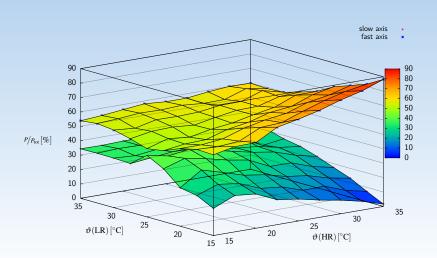
Temperature tuning

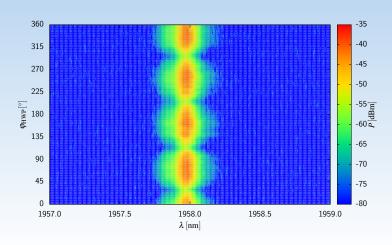

Polarized output power

Results so far

- wavelength tunable
- ✓ total output power of about 2 W
- polarization extinction ratio of up to 41 dB
- ✗ single-polarization


Spectrum in terms of pump power


Threshold of fast axis peak


Threshold of slow axis peak

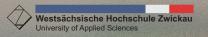
Output power

Single-polarization possible

Fabrication of fiber Bragg gratings Characterization of fiber Bragg gratings All-active fiber laser set-up Spliced fiber laser


Resumée

- ✓ wavelength tunable
- ✓ total output power of about 3.5 W
- ✓ single-polarization



Outlook

- orthogonal splice with respect to stress rod axes
- further investigation of the splices
- thermally induced change of the stress field (stress rods)?

THANK YOU!

$$R_{\rm B}(\lambda_{\rm B}) = \frac{\sinh^2\left(\eta \Delta n \sqrt{1 - \Gamma^2} N^{\Lambda/\lambda}\right)}{\cosh^2\left(\eta \Delta n \sqrt{1 - \Gamma^2} N^{\Lambda/\lambda}\right) - \Gamma^2} \tag{1}$$

$$\lambda_{\rm B} = 2n_{\rm e}\Lambda\tag{2}$$

$$\Gamma(\lambda) = \frac{1}{\eta \Delta n} \left(\frac{\lambda}{\lambda_{\rm B}} - 1 \right) \tag{3}$$